1. Use the most restrictive conditions in end of WHERE clause because restriction in Oracle usually (if not fixed by optimizer) begins from the end to the beginning of WHERE clauses.
2. Don’t use Count() SQL function in SELECTs to check existence – instead of that use the construction “SELECT 1 INTO :li_exists FROM DUAL WHERE EXISTS (SELECT 1 FROM…)” – EXISTS returns TRUE just after finding the first row which satisfies the condition, whereas Count() performs full table scan.
The following example illustrates two these rules:

BAD CODE:

SELECT Count(farming_operation_uid)

 INTO :ll_count

 FROM v_structural_change_amount

WHERE farming_operation_uid = :al_farmop_uid
 AND program_year = :ai_program_year
 AND margin_type_uid = 14
 AND ending_date IS NULL
 AND amount <> 0;

IF ll_count > 0 THEN...

GOOD CODE:

SELECT 1

 INTO :li_exists
 FROM dual

WHERE EXISTS (SELECT 1

 FROM v_structural_change_amount

 WHERE amount <> 0

 AND ending_date IS NULL

 AND margin_type_uid = 14

 AND program_year = :ai_program_year

 AND farming_operation_uid = :al_farmop_uid);

IF li_exists = 1 THEN...
3. There are PB functions which call database a lot of times, even in loop – of course, the main function should be implemented as a stored procedure which is called from PB, so there will be only two passing of data between the client and the server – sending of input data to the proc and getting the result from it. That will also decrease dramatically the number of PB functions because each small going to database usually forces to create 1-2 functions in different logical layers (in BUS and DA objects).
4. There is incorrect use of exceptions all over the application. If function A calls function B which calls function C which calls function D then TRY…CATCH block should be only in function A (enclosing the calling of function B); functions B, C and D should not have their own TRY…CATCH blocks – they should pass the exception outside, to the calling script (if they don’t need to process the exception in a special way that usually doesn’t happen). That is implemented by filling of the “Throws” field in the function’s header:
[image: image1.png]Access Return Type. Function Han

[ubic][boskean][s
Passby Argument Type_ Argunent
e ~][ona][+ Farmma

vae ~|[si_program.

That is the strong side of the exceptions handling mechanism (not utilized in our application) – it decreases amount of code and indenting (if the “interesting” code is inside of TRY…CATCH then it initially has extra indenting of one tab). Even the “old-fashioned” errors processing (by returning -1 by the function) is much more elegant than an improper use of exceptions – they was invented to decrease the number of code lines, not to increase as we see in the application!
5. Comment your code if it is not extremely self-understandable! At least a couple of words! That is the most comments-free application I have ever seen… Sometimes a script is duplicated with minor changes (that is terrible by itself – no code duplication, only universal solutions!!!) with no comments, so we see a number of very-very similar (and very-very long) scripts…
6. The next suggestion is for managers, not for developers. Does somebody need all these remarks about what, when and by who was changed or added in the code? Thousands of such lines don’t make the code more understandable. Developers are forced to struggle with them daily only for theoretical possibility that one day it may be interesting for somebody. But there is a convenient file comparison utility in the versioning software! I suggest to remove all that “Changed by…” rubbish and not to create it in the future.
Maybe you will find more useful stuff here: http://zuskin.com/coding_habits.htm.

Of course, not all the described problems exist in the CAIS application, the article was written before I began to work here!!!

And sorry for my immigrant’s English…
